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Abstract 

Background  Liver fibrosis is an irreversible liver destruction. Apigenin (API) has different pharmacological properties 
as anticancer, anti-inflammatory, and antioxidant; however, API hepatoprotective and therapeutic effects are not often 
studied. This study assesses protective and therapeutic API effects on hepatic injuries produced by thioacetamide 
(TAA) in rats.

Methods  Forty-nine rats were sorted into seven groups (7 in each): negative control (G1), positive control (G2, TAA), 
API group (G3), TAA+API group (G4), TAA+SL group (G5), API+TAA group (G6), and SL+TAA group (G7). API and SL 
effects on TAA-induced hepatotoxicity were examined by determined body weights, liver weights, complete blood 
count picture (white blood cells, red blood cells, hemoglobin, hematocrit, and platelets counts), liver function tests 
(alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, gamma glutamyl transferase, alkaline 
phosphatase, total proteins, albumin, and globulin), and oxidative stress markers (malonaldehyde, catalase, superox-
ide dismutase, and reduced glutathione) in serum and liver histological was assessed.

Results  TAA decreased red blood cells, platelets, hemoglobin content, and hematocrit (p <0.001) and increased 
white blood cells count (p <0.001) versus control. Serum values of alanine aminotransferase, aspartate aminotrans-
ferase, lactate dehydrogenase, gamma glutamyl transferase, alkaline phosphatase, and malondialdehyde significantly 
elevated (p <0.001); meanwhile, total protein, albumin, globulin, catalase, superoxide dismutase, and glutathione S 
transferase decline (p <0.001) versus negative control. Hepatic structure of TAA group revealed fibrosis and hepato-
cyte destruction. Therapeutic or protective treating TAA-rats with API or SL ameliorate hematological values, liver 
functions, oxidative stress, and histological alterations especially therapeutic effects on hematological changes, liver 
function tests, and oxidative stress markers.

Conclusions  Apigenin had therapeutic and protective effects on liver fibrosis due to its antioxidant activity with ther-
apeutic better than protective effects.

Keywords  Apigenin, Complete blood count, Liver fibrosis, Liver function test, Oxidative stress markers, Protective 
effects, Silymarin, Structure, Therapeutic effects

Introduction
The liver has various biological functions as drugs 
metabolism, proteins formation, and regulation of glu-
colipid metabolism. Acute or chronic liver injury can 
lead to hepatic fibrosis that manifested by an excessive 
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extracellular matrix (ECM) formation and alteration of 
hepatic functions. In injured liver, hepatic stellate cells 
(HSCs) produced ECM [1]. Thioacetamide (TAA) is sub-
stance that contains thiono-sulfur. It is used as an organic 
solvent, a fungicide, a rubber vulcanization accelerator, 
and motor oil stabilizer [2]. Animals treated with TAA 
developed hepatic fibrosis and ultimately cirrhosis, with 
biochemical and structural alterations as those reported 
in human diseases. Because of TAA effects on RNA, 
DNA, and gamma-glutamyl transpeptidase activity, it is 
a model hepatotoxicity. When TAA is given in different 
doses orally for long period, it causes histologically alter-
ations similar to viral hepatitis infection, large hepatic 
nodules, liver cell adenomas, cholangiomas, and hepa-
tocarcinomas [3]. TAA poisoning produced as a result 
of a mixed-function oxidase system’s bioactivation of 
substance, mainly by flavin adenine dinucleotide (FAD) 
monooxygenases and CYP2E1 [4]. After TAA is metabol-
ically activated, reactive metabolites produced, includ-
ing radicals formed from reactive oxygen species (ROS) 
and TAA-S-oxide produced as intermediates. Reactive 
metabolites combined to cellular macromolecules cova-
lently cause oxidative stress [5, 6].

There are currently no completely effective medica-
tions that provide the organ with entire protection or 
support hepatic cell regeneration, despite significant 
improvements in modern medicine. Natural antioxi-
dants, especially phytochemicals, are employed in liver 
diseases treatment caused by oxidative stress [7]. Api-
genin (API) (4′,5,7-trihydroxyflavone) obtained from 
Matricaria chamomilla is a naturally occurring flavo-
noid with significant antioxidant potential without hav-
ing noticeable harmful effects. Apigenin is found in large 
quantities in different vegetables and fruits as celery, 
parsley, onions, chamomile, oranges, propolis, honey, 
thyme, garlic, and spices [8]. It has a variety of therapeu-
tic potentials, including anti-inflammatory, anti-cancer 
qualities, and anti-oxidant [8]. Previous researches dem-
onstrated that API had chemoprotective, hepatoprotec-
tive, and anti-genotoxic actions versus several models of 
chemically induced hepatic damage [9, 10]. Apigenin has 
a protective outcome on ischemia/reperfusion-induced 
rat hepatic necrosis via Fas/FasL pathway regulation [11], 
suppression of inflammation, oxidative stress, and apop-
tosis [12]. Goudarzi et  al. reported that API can reduce 
oxidative stress and inflammation to prevent methotrex-
ate-induced hepatotoxicity in rats [13]. Also, Zhao et al. 
reported that by controlling the SIRT1-p53 axis, API 
protects against acetaminophen-induced liver damage 
by encouraging acetaminophen-induced autophagy and 
reducing inflammatory reactions and oxidative stress 
damages [14]. Meanwhile, studies did not evaluate pro-
tective or therapeutic API effects in liver fibrosis.

The flavonolignans known as silymarin are derived 
from “milk thistle,” Silybum marianum. Flavonoid iso-
mers like silidianin, isosilibinin, silibinin, and silichristin 
are mixed together in it. Silymarin is utilized to treat hep-
atitis and liver cirrhosis caused by alcohol [15]. Silyma-
rin decline hepatic fibrosis by 30–35%, and in little cases, 
it reversed liver fibrosis [16]. Silymarin had free radi-
cal scavenging characteristics and capability to increase 
endogenous anti-oxidant defense systems in  vivo [17]. 
Silymarin possess anti-metastatic and anti-inflammatory 
actions; it has protective action against radiotherapy and 
chemotherapy toxicity [15].

The aim of the current work was to study protec-
tive and therapeutic effects of apigenin in TAA-induced 
hepatotoxicity rat model by estimating complete blood 
count (CBC), serum liver function tests, and oxidative 
stress markers and histological assessment of liver tissue 
and to investigate possible mechanisms of action.

Materials and methods
Chemicals
Thioacetamide (CH3CSNH2, ACS reagent, ≥99.0%) was 
obtained from Sigma-Aldrich group (SKU #163678), St. 
Louis, MO, USA. TAA stock solution (0.03% w/v) pre-
pared by liquefying 30 mg solid crystals in 100 ml dis-
tilled water. Apigenin, with 80% purity, was obtained 
from I Herb, USA (product code FOA-66022). Silymarin 
(product code 14605), with 80% purity, was purchased 
from local pharmacy in Jeddah, Saudi Arabia. Before 
utilization, apigenin and silymarin were dissolved in dis-
tilled water (10% w/v) and mixed well till powder dis-
solved and given orally to rats.

Animals
Animal house at King Fahd Medical Research Center 
(KFMRC), King Abdul-Aziz University (KAU), Jeddah, 
Saudi Arabia, provided 49 adult male Wister Albino rats 
with weights ranging from 180 to 250 g. The male rats 
only were used to avoid hormonal changes that occurs in 
female rats during estrus cycle. Before the studies began, 
rats were housed for 1 week, 7 rats in each cage, in wide 
cable bases polypropylene cages to prevent coprophagy 
to allow them to acclimatize to the typical laboratory 
conditions of temperature (20°C), humidity (55–65%), 
and light/dark (12/12h). Water and normal ordinary 
rodent laboratory pellets were freely available to the rats. 
Study was approved by Ethical Committee of KAU Medi-
cal Research Center, Jeddah, KSA. The care and handling 
of experimental animals were performed according to 
ARRIVE guideline for care and use of laboratory animals.

Study design
The rats were randomly divided into seven equal groups.
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1.	 Negative control group (G1): rats took 0.9% NaCl 
(vehicle) daily intraperitoneal (i.p.) injections for 4 
weeks.

2.	 TAA group (G2): to cause liver fibrosis in rats, TAA 
(200 mg/kg) injected i.p. three times/week for 4 
weeks [18].

3.	 API group (G3): rats received apigenin (50 mg/kg) 
orally daily for 3 weeks [19].

4.	 TAA+API therapeutic experimental group (G4): rats 
injected i.p. with TAA (200 mg/kg) 3 times/week for 
4 weeks then received API (50 mg/kg) orally daily for 
3 weeks.

5.	 SL+API therapeutic experimental group (G5): rats 
injected i.p. with TAA (200 mg/kg) 3 times/week for 
4 weeks then received silymarin (100 mg/kg) orally 
daily for 3 weeks [20].

6.	 API+TAA protective experimental group (G6): rats 
took apigenin (50 mg/kg) orally daily for 3 weeks 
then injected with TAA (200 mg/kg) 3 times/week 
for 4 weeks.

7.	 SL+TAA protective experimental group (G7): rats 
supplemented with silymarin (100 mg/kg) orally daily 
for 3 weeks then injected with TAA (200 mg/kg) 3 
times/week for 4 weeks.

Body weights of the animals were recorded at start and 
experimental end. Percentage changes of body weight 
were calculated by subtract final body weight from initial 
body weight to get weight gain that was then divided by 
initial body weight and multiply by 100. At 7 weeks, after 
12 h of experimental end, the animals were anesthetized 
by diethyl ether inhalation and abdominal cavity was 
opened. The liver was isolated, cleaned, and washed. The 
livers were weighed; and liver index was calculated by 
dividing liver weight by final body weight multiplied by 
100 (liver index = liver weight/total body weight × 100). 
The livers were excised into pieces and were kept in iso-
tonic formalin for histological assessment.

Collection of blood samples
At 7 weeks, after 12 h of experimental end, the animals 
were anesthetized by diethyl ether inhalation. Blood (5 
ml) was gathered from orbital venous plexus in two dif-
ferent types of tubes. First tubes contained calcium 
EDTA for use with an automatic hematology analyzer 
(BC-2800) to measure count of white blood cells (WBCs), 
platelets, red blood cells (RBCs), hemoglobin contents 
(HGB), and hematocrit levels (HCT). The other tubes 
containing blood samples were left for a brief period of 
time to permit coagulation. Sera produced by centrifug-
ing at 600 g for 10 min, after which sera were aliquoted 
and kept at 80°C until needed. With the help of rats 
ELIZA kits, the obtained serum was used to calculate 

liver function tests such as aspartate transaminase (AST), 
alkaline phosphatase (ALP), alanine transaminase (ALT), 
gamma glutamyl transferase (GGT), lactate dehydroge-
nase (LDH), total proteins, albumin, and globulin, as well 
as oxidative stress markers like malondialdehyde (MDA), 
glutathione S transferase (GST), catalase (CAT), superox-
ide dismutase (SOD), and using rats ELIZA kits in central 
laboratory.

Histological examinations of the liver
For any obvious changes, the liver was closely scruti-
nized. Midsections of the left liver lobes prepared for 
light microscopy in order to perform a liver histologi-
cal evaluation. The specimen was first fixed in 10% neu-
tral formalin solution, gradually dehydrated in ethanol 
(50–100%), cleaned in xylene, and embedded in paraffin. 
Sections were then cut into 5-m thick pieces, and hema-
toxylin and eosin was used to stain them. To evaluate 
tissue alterations, an experienced histopathologist used 
light microscopy to analyses liver slices.

Statistical analysis
The data were expressed as mean ± standard error of 
means (SEM). Values were analyzed utilizing SPSS ver-
sion 22 (Statistical Package for Social Sciences, IBM 
Corp., Armonk, NY, USA). The normality of data distri-
butions was assessed using the Shapiro-Wilk test. This 
test was chosen due to its suitability for small sample 
sizes and its accuracy in detecting deviations from nor-
mality. Normality assumptions are crucial for the valid-
ity of usage parametric tests for comparison. Result of 
the test revealed that the parametric data was normally 
distributed so one-way ANOVA followed by Tukey’s 
test was utilized to compare data to negative and posi-
tive control groups. Statistical significance was defined 
as P <0.05.

Results
Body weights (grams) and percentage changes in body 
weight (%)
Final body weights (grams) were significantly increased in 
API, TAA+SL, API+TAA versus TAA group (P < 0.001, 
P = 0.005, P = 0.032). Percentage change in body weight 
(%) was significantly decreased in TAA and API+TAA 
versus negative control (P < 0.001 and P = 0.029), but 
were significantly increased in API, TAA+API, TAA+SL 
versus TAA group (P <0.001 for all) (Table 1).

Liver weight and liver index
The liver weights (grams) were significantly elevated in posi-
tive control group versus negative control group (P =0.023). 
Meanwhile, liver indices (%) were significantly elevated in 
TAA group versus negative control, API, TAA+API, and 
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TAA+SL (P < 0.001, P < 0.001, P = 0.009. P = 0.021, respec-
tively) (Table 1).

Complete blood count
WBC count (10^3/uL) was significantly elevated in 
TAA, API+TAA, and SL+TAA versus negative control 
(P < 0.001, P =0.008, P < 0.001), but was significantly 
decreased in API, TAA+ API, TAA+SL, API+TAA, and 
SL+TAA versus TAA group (P < 0.001 for all). TAA 
intake led to significant decreased in RBC count (10^6/
uL), HBG content (g/dL), and HCT value (%) in TAA 
group versus negative control, API, TAA+API, TAA+SL, 
API+TAA, and SL+TAA (P <0.001 for all). Admiration of 

TAA led to significant decreased in platelets count (10^6/
uL) in TAA, API+TAA, and SL+TAA versus negative 
control (P <0.001 for all) (Table 2).

Liver function tests
Serum values of ALT (U/L), AST (U/L), ALP (U/L), GGT 
(U/L), and LDH (U/L) were elevated in TAA group versus 
negative control, API, TAA+API, TAA+SL, API+TAA, 
and SL+TAA (P <0.001for all). Also, AST (U/L), ALT 
(U/L), and GGT (U/L) were elevated in API+TAA versus 
negative control (P < 0.001, P < 0.001, and P = 0.001). In 
SL+TAA, AST (U/L) and ALT (U/L) serum levels were 
significantly increased versus negative control (P < 0.001 

Table 1  Comparison of body weight and liver weight in different studied groups

* significance versus control (G1); #significance versus TAA (G2); *P <0.050 versus control (G1); **P <0.010 versus control (G1); ***P <0.001 versus control (G1); #P <0.050 
versus TAA (G2); ##P <0.010 versus TAA (G2); ###P <0.001 versus TAA (G2)

Groups Parameters Initial body 
weights (grams)

Final body 
weights (grams)

Percentage change in 
the body weight (%)

Liver weights (grams) Liver index (%)

Control (G1) 213.14±1.87 223.00±2.06 4.62±0.25 7.79±0.21 3.49±0.09

TAA (G2) 212.29±2.39 202.43±2.45 −4.63±0.84*** 10.49±0.47* 5.20±0.17***

API (G3) 218.71±7.74 239.00±3.30### 9.28±0.65### 8.95±0.44 3.51±0.16###

TAA+API (G4) 213.71±4.03 224.29±3.51 5.01±1.04### 8.75±0.70 3.89±0.29##

TAA+SL (G5) 220.86±3.60 232.00±3.15## 5.22±2.25### 9.22±0.50 4.01±0.18#

API+ TAA (G6) 229.29±11.75 226.86±11.11# −0.97±1.13* 9.74±0.87 4.33±0.44

SL+ TAA (G7) 216.71±4.19 217.00±5.23 0.11±1.18 9.55±0.47 4.35±0.23

Table 2  Comparison of hematological changes in different studied groups

* significance versus control (G1); #significance versus TAA (G2); *P <0.050 versus control (G1); **P <0.010 versus control (G1); ***P <0.001 versus control (G1); #P <0.050 
versus TAA (G2); ##P <0.010 versus TAA (G2); ###P <0.001 versus TAA (G2)

Groups Parameters WBC (10^3/uL) RBC (10^6/uL) HBG (g/dL) HCT (%) Platelets (10^3/uL)

Control (G1) 12.34±0.68 8.71±0.37 17.25±0.39 46.23±0.50 964.43±14.72

TAA (G2) 27.42±2.16*** 5.85±0.61*** 8.00±0.70*** 33.80±2.80*** 466.00±14.96***

API (G3) 12.92±0.36### 8.92±0.19### 17.58±0.48### 48.04±0.75### 1051.14±35.19###

TAA+API (G4) 12.45±0.58### 8.66±0.87### 16.37±0.38### 45.00±1.14### 1008.71±34.89###

TAA+SL (G5) 13.15±0.44### 8.39±0.44## 16.66±0.55### 44.37±1.20### 1001.14±30.53###

API+ TAA (G6) 17.71±0.67**,### 8.17±0.52## 15.56±0.53### 46.03±1.61### 635.86±80.24***

SL+ TAA (G7) 19.45±0.91***,### 7.91±0.41# 12.51±0.82***,### 46.37±0.69### 518.43±53.52***

Table 3  Comparison of liver function tests in different studied groups

* significance versus control (G1); #significance versus TAA (G2); *P <0.050 versus control (G1); **P <0.010 versus control (G1); ***P <0.001 versus control (G1); #P <0.050 
versus TAA (G2); ##P <0.010 versus TAA (G2); ###P <0.001 versus TAA (G2)

Groups Parameters AST (U/L) ALT (U/L) ALP (U/L) GGT (U/L) LDH (U/L) Total protein 
(g/L)

Albumin 
(g/L)

Globulin (g/L)

Control (G1) 21.97±1.50 22.13±1.60 111.40±2.77 7.32±0.77 175.71±10.94 87.82±3.79 14.49±0.74 73.23±4.10

TAA (G2) 217.67±17.90*** 159.66±11.29*** 337.11±20.65*** 54.57±4.91*** 821.14±67.63*** 46.60±5.23*** 4.80±0.62*** 42.266±5.05***

API (G3) 22.54±1.93### 26.56±1.79### 116.26±3.45### 5.48±0.78### 179.86±10.75### 86.14±2.96### 14.86±0.87### 71.43±3.17###

TAA+API (G4) 54.07±5.21### 42.61±8.06### 133.32±12.34### 9.56±0.93### 272.00±26.00### 82.57±2.03### 13.97±0.94### 68.60±2.01###

TAA+SL (G5) 24.30±2.02### 40.12±6.29### 139.86±16.04### 8.99±0.67### 227.71±26.46### 87.13±3.59### 16.01±1.05### 71.12±3.66###

API+ TAA (G6) 91.19±4.58***,### 74.75±6.00***,### 134.88±13.19### 22.27±3.18***,### 214.71±19.18### 83.44±3.77### 10.91±0.83### 72.53±4.10###

SL+ TAA (G7) 88.01±3.97***,### 55.85±6.87*,### 114.66±5.85### 13.18±1.77### 188.00±9.58### 86.70±2.09### 11.71±0.70### 74.98±2.27###
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and P = 0.017). TAA intake led to significant decreased 
in total proteins (g/L), albumin (g/L), and globulin (g/L) 
in TAA group versus negative control, API, TAA+API, 
TAA+SL, API+TAA, and SL+TAA (P <0.001 for all) 
(Table 3).

Oxidative stress markers
MDA serum levels (nmol/ml) were significantly elevated 
in TAA group versus negative control, API, TAA+API, 
TAA+SL, API+TAA, and SL+TAA (P <0.001 for all). 
Meanwhile, antioxidant serum values of CAT (nmol/

ml) and SOD (ng/ml) were significantly declined in TAA 
group versus negative control, API, TAA+API, TAA+SL, 
API+TAA, and SL+TAA. Also, CAT levels (nmol/ml) 
were significantly decreased versus control in TAA+API, 
API+TAA, and SL+TAA. SOD values (ng/ml) were 
decline versus control in TAA+SL, API+TAA, and 
SL+TAA. GST serum values (ng/ml) were decreased in 
TAA versus negative control, API, TAA+API, TAA+SL, 
and API+TAA. GST serum values (ng/ml) were still sig-
nificantly declined in therapeutic groups API+TAA and 
SL+TAA versus negative control (Table 4).

Table 4  Comparison of oxidative stress markers in serum in different studied groups

* significance versus control (G1); #significance versus TAA (G2); *P <0.050 versus control (G1); **P <0.010 versus control (G1); ***P <0.001 versus control (G1); #P <0.050 
versus TAA (G2); ##P <0.010 versus TAA (G2); ###P <0.001 versus TAA (G2)

Groups Parameters MDA (nmol/ml) CAT (nmol/ml) SOD (ng/ml) GST (ng/ml)

Control (G1) 1.28±0.15 76.40±2.60 7.74±0.48 72.01±5.11

TAA (G2) 4.93±0.31### 31.82±4.56*** 3.31±0.24*** 25.27±2.14***

API (G3) 0.77±0.16### 78.35±1.82### 7.80±0.38### 77.23±4.59###

TAA+API (G4) 1.92±0.28### 59.51±5.38*,### 6.92±0.48### 62.88±4.59###

TAA+SL (G5) 1.17±0.27### 65.11±3.62### 5.23±0.25***,# 63.75±3.37###

API+ TAA (G6) 2.07±0.19### 57.51±3.10**,### 5.53±0.31**,## 43.82±3.98***,#

SL+ TAA (G7) 2.14±0.26### 54.86±3.01**,### 5.56±0.47**,## 41.31±3.80***

Fig. 1  The liver of negative control group (G1) shown. a Image shows the macroscopic appearances of liver with regular smooth surface. b 
Photomicrograph shows normal appearance of hepatic parenchyma: notice the thin capsule (black thick arrow). The boundaries of liver lobules are 
ill-defined but can be identified by presence of central veins (thin black arrows) and portal areas (white arrow) (HX&E ×100). c A photomicrograph 
shows the thin-walled central vein (V) and normal hepatocytes (H) with rounded vesicular nuclei and eosinophilic cytoplasm with basophilic 
granules. Note: thin-walled blood sinusoids (arrow) between the hepatocyte cell cords and lined with endothelial cells and von Kupffer cells (×400 
HX&E). d A photomicrograph shows that the portal area contained branch of hepatic artery (A), branch of portal vein (V), and bile duct (D) (×400 
HX&E)
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Histological results
Negative control group (G1)
Examination of gross morphology of control rat liver 
revealed the normal appearance, even, and smooth sur-
faces of the liver without micronodules (Fig.  1a). Using 
HX & E-stained sections of liver of healthy negative con-
trol rats showed normal hepatic architecture, in which 
liver divided into ill-defined classic hepatic lobules. Lob-
ule was formed of cords of hepatocytes radiating from 
central vein to lobule periphery (Fig.  1b). The hepato-
cytes were polyhedral in shape with strongly eosinophilic 
cytoplasm containing basophilic granules, and distinct 
vesicular nuclei. Hepatic sinusoids observed in between 
the hepatic cell cords lined with von Kupffer cells and 
endothelial cells (Fig. 1c). At lobules’ periphery, branches 
of hepatic artery, portal vein, and bile duct were found in 
portal tracts (Fig. 1d).

Positive control group (G2)
Gross morphology in positive control group took TAA 
and showed irregular-shaped liver with uniform micro-
nodule formations (whitish granules) and uneven gran-
ular surface (Fig.  2a). Examination of HX&E-stained 
sections of TAA-treated group showed massive changes 

in liver histology as proved by presence of leucocytic 
cell infiltration, necrotic tissue, and deposition of con-
nective tissue fibers. The presence of nodular hepato-
cytes was clearly observed (Fig. 2b). The nodules were 
surrounded by thick fibrous connective tissue septa 
that divide the liver into pseudo lobules. Dilated cen-
tral vein was also detected, and massive, dilated portal 
vein and bile duct proliferation. Hepatocytes had deep 
acidophilic cytoplasm with small dark nuclei and leu-
cocytic cellular infiltrations were seen. Some hepato-
cytes showed that different degenerative alterations like 
hydropic degeneration; cloudy swelling; vacuolization, 
and necrosis were observed. In addition, the portal area 
manifested inflammatory cell infiltration and fibrosis 
surrounding bile duct (Fig. 2c).

Apigenin‑treated group (G3)
Gross liver morphology of rats treated with apigenin 
(API) revealed normal architecture of the liver with 
smooth even surface without micronodules as negative 
control group (Fig.  3a). Regarding HX&E-stained sec-
tions, the structure of the liver appeared nearly similar 
to the negative control group with relatively normal 
hepatocytes exhibiting rounded vesicular nuclei and 

Fig. 2  The liver of rats treated with TAA (G2) show. a Macroscopic appearances of liver show irregular whitish macro-and micronodules. b 
A photomicrograph stained with HX&E stain shows lymphocytic infiltrations (arrow), degeneration, and necrosis in the liver cells and pseudo 
lobules (L) with thick fibrous septa (FS). Note: dilatation of the central vein (CV) (HX&E ×200). c A photomicrograph stained with HX&E stain showing 
cytoplasmic vacuolization, hepatocyte degeneration, necrosis, infiltration of lymphocytes, expanded portal tracts, bile duct proliferation (bd), 
and deposition of connective tissue fibers (CT). Note: dilatation of the portal vein (PV) (HX&E ×400)
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eosinophilic cytoplasm with basophilic granules. Thin-
walled blood sinusoids lined with endothelial cells and 
von Kupffer cells were observed between hepatocyte 
cell cords (Fig. 3b).

Apigenin therapeutic experimental group (G4)
Gross liver morphology of rats treated with TAA and 
API revealed normal hepatic architecture with smooth 
uneven surface more or less as negative control group 

(Fig. 4a). Liver sections stained with HX&E revealed the 
ameliorating action of apigenin versus TAA-induced 
liver damage. Treatment with apigenin showed par-
tially preserved hepatocyte’s structure and architecture. 
Small areas of hepatocytes showed mild degeneration 
and necrosis (Fig. 4b). The blood sinusoids showed slight 
dilatation and hemorrhage. In addition, hemorrhage and 
few cellular infiltrations around the central vein were still 
observed (Fig. 4c).

Fig. 3  The liver of rats treated with apigenin (API) (G3) shown. a Macroscopic appearances of the liver normal architecture of the liver with smooth 
surface. b A photomicrograph stained with HX&E stain shows that the structure of the liver appeared nearly similar to the negative control group 
with normal hepatocytes (H) exhibited rounded vesicular nuclei and eosinophilic cytoplasm with basophilic granules. Note: the central vein (CV) 
(×400 HX&E)

Fig. 4  The liver of rats treated with TAA and API (G4) shown. a The macroscopic appearances of the liver with normal architecture with smooth 
surface nearly similar to that of the negative control group. b A photomicrograph stained with HX&E stain shows partially preserved hepatocytes 
structure and architecture with small areas of mild hepatocytes necrosis (N) and leucocytic infiltration around the central vein (arrow) (×200 HX&E) 
c A photomicrograph stained with HX&E stain shows partially preserved hepatocyte structure and architecture with small areas of mild hepatocyte 
necrosis (arrow) and leucocytic infiltration around central vein (arrowhead). Note: slight dilatation and hemorrhage of the blood sinusoids were 
observed (×400 HX&E)
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Silymarin therapeutic experimental group (G5)
Gross liver morphology of rats treated with TAA and 
silymarin revealed normal hepatic shape with nearly 
smooth uneven surface more or less as negative control 
group (Fig.  5a). Silymarin-fed groups displayed signifi-
cant protection of the hepatic cells from apoptotic death 
versus widespread liver damages initiated in TAA-treated 
group (Fig. 5b). Liver sections of silymarin-treated group 
revealed many hepatocytes with vesicular nuclei and 
eosinophilic granular cytoplasm. Dilated and slightly 
congested central vein was still detected in some areas  
of this group (Fig.  5c). Silymarin alleviate inflammation, 
edema, leucocyte cell infiltration, necrotizing hepatocytes, 
and connective tissue fiber propagation caused by TAA. As 
a result, the liver tissue retained its almost typical hepatic 
lobular architecture with central veins and radiating hepatic 
cell cords (Fig.  5c). This group appeared more improved 
in histological structure compared to the G7. Silymarin 
showed hepatoprotection and ameliorated TAA-induced 
liver damage when given after treatment with TAA.

API protective experimental group (G6)
Gross liver morphology of rats treated with TAA and 
API revealed normal liver architecture with smooth une-
ven surface more or less as negative control group and 
also to group 4 (Fig.  6a). Using HX&E-stained sections 

revealed the protective effect of API with partially pre-
served hepatocyte’s structure and architecture. Small 
areas of hepatocytes showed mild degeneration and 
necrosis (Fig.  6b). The blood sinusoids showed slight 
dilatation and hemorrhage. In addition, hemorrhage and 
few cellular infiltrations around the central vein were still 
observed (Fig. 6c). This group is nearly similar to group 4 
in histological structure.

Silymarin protective experimental group (G7)
Gross liver morphology of rats treated with silymarin 
and TAA preserved their liver’s nearly normal anatomi-
cal form and appearance with smooth even surface and 
prevented the growth of micro nodules (Fig.  7a). Liver 
section taken from group 7 and stained with HX&E 
showed preserved and improvement in hepatocyte struc-
ture and architecture with few cells still showed necro-
sis compared to positive control group (Fig. 7b). Dilation 
and congestion of the blood sinusoids and hemorrhage 
around the dilated central vein were also observed more 
obvious than group 5 (Fig. 7c).

Discussion
Liver has various biological functions as drug metabo-
lism, protein synthesis, and glucolipid metabolism regu-
lation. Hepatotoxins also were produced as a result of 

Fig. 5  The liver of rats treated with TAA and silymarin (G5) shown. a Macroscopic appearances of the liver show normal architecture with smooth 
surface nearly similar to the negative control group. b A photomicrograph stained with HX&E stain shows partially preserved hepatocyte structure 
and architecture with little leucocytic infiltration around the central vein (×200 HX&E). c A photomicrograph shows partially preserved hepatocyte 
structure and architecture with small areas of mild necrosis (arrow) and few leucocytic infiltrations especially around the central vein (arrowhead) 
(×00 HX&E)
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Fig. 6  The liver of rats treated with API and TAA (G6) shown. a Macroscopic appearances of the liver show normal architecture with smooth surface 
nearly similar to the negative control group. b A photomicrograph stained with HX&E stain shows improvement in the histological structure 
of the liver (×200 HX&E). c A photomicrograph stained with HX&E stain shows improvement in the histological structure of the liver with slight 
hemorrhage around the central vein (CV) and in the dilated blood sinusoids (S) (×400 HX&E)

Fig. 7  Liver of rats treated with silymarin and TAA (G7) shown. a The macroscopic appearances of the liver reveal normal architecture 
of the liver with smooth surface nearly similar to the negative control group. b A photomicrograph stained with HX&E stain shows partially 
preserved hepatocyte structure and architecture with small areas of cell necrosis and hemorrhage around the dilated central vein (CV) (×200 
HX&E). c A photomicrograph stained with HX&E shows preserved hepatocyte structure and architecture with few cells shows necrosis (arrow) 
and hemorrhage around the dilated central vein (CV). Note: the dilated blood sinusoids with slight hemorrhage (S) (×400 HX&E)
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excess medications, chemicals, including those found 
in factories and labs, natural chemicals (such as micro-
cystins), and herbal medicines [21]. Recent researches 
stressed upon hepatoprotective actions of plants [22, 23]. 
Meanwhile, the hepatoprotective and therapeutic actions 
of apigenin are not sufficiently supported by researches. 
This study aimed to investigate the hepatoprotective and 
therapeutic effects of apigenin’s in rat model of TAA-
induced hepatotoxicity. Data from the literature indicate 
that rat animal models are useful for understanding the 
pathogenesis and etiology of hepatotoxicity since their 
physiology is similar to that of humans [24].

This study’s findings revealed that, when compared 
to negative control group, TAA administration led to 
decline in final body weight and elevation in liver weight 
and liver index. These alterations can be the result of 
TAA’s harmful effects on bodily metabolism and liver. 
The current study proved that TAA caused changes in 
measured hematological and biochemical parameters. 
The obtained hematological findings demonstrated 
that TAA exposure resulted in decline in RBC count, 
hemoglobin content, hematocrit value, and platelet 
count, while a significant increase in WBC count. These 
results were in line with those obtained by Al-Attar who 
reported that rats’ exposure to TAA caused statisti-
cal decline in values of RBCs, hemoglobin and hemato-
crit, while the value of WBC was significantly elevated 
versus health control [25]. Hematological examination 
was employed in the identification of many diseases 
and pathologies caused by various environmental con-
taminants, toxicants, and medications in both animals 
and humans [26]. The hematopoietic system is prone to 
destruction by TAA exposure, which leads to decline in 
RBCs and platelet counts. Reduced hemoglobin concen-
tration may be caused by increased RBC lysis, reduced 
RBC synthesis by bone marrow, and/or reduced liver 
production of proteins. Immune system activation due to 
tissue destruction or increased inflammation brought on 
by TAA exposure may led to current elevation in WBC 
count [25]. The current study’s findings also revealed 
that serum values of liver enzymes as ALT, GGT, AST, 
and LDH elevated while levels of total proteins, albu-
min, and globulin were lowered. As indicators of liver 
injury and illnesses, liver enzymes like AST, ALT, ALP, 
and GGT are routinely employed [27–29]. Following the 
administration of TAA, cytoplasmic enzymes known as 
transaminases are released into the systemic circulation, 
signaling a loss of structural and functional liver integ-
rity. Results of earlier experimental studies also showed 
that animals exposed to TAA had significantly higher 
levels of liver enzymes [30–32]. According to findings of 

present study, TAA-induced liver damage resulted in a 
considerable drop in total protein, which may have been 
caused by defect in RNA formation [33] and changes in 
lipid, protein, and carbohydrate metabolisms as a result 
of TAA-induced liver damage [34]. The results of the 
current study demonstrated that TAA caused oxidative 
stress as revealed by a significant decreased in serum lev-
els of antioxidants like SOD, CAT, and GST and an ele-
vation of oxidative stress marker as MDA. TAA caused 
oxidative stress in earlier experimental studies, which 
were supported by the considerable changes in oxidative 
indicators including SOD and GSH [35, 36]. Microsomal 
cytochrome P450E1 and/or flavin-containing monooxy-
genase systems are involved in TAA bioactivation, which 
results in generation of TAA sulfoxide, TAA-S, S-dioxide, 
and lipid peroxidation at the plasma membrane. The 
S-oxide metabolite (TASO2) forms acetylimidolysine 
derivatives, which have hepatotoxic effects, by covalently 
attaching to liver macromolecules. Calcium was released 
from intracellular reserves as a result of TAA. It was 
found that a number of pathways involved in cell dam-
age or proliferation are activated by both ROS and cal-
cium [37]. Increased permeability, mitochondrial inner 
membrane damage, and inhibition of mitochondrial res-
piration were caused by elevation of ROS production and 
calcium homeostasis disturbance [38].

In the present research, TAA intake to rats led to severe 
histological changes in the liver as revealed by presence 
of leucocyte cell infiltrations, increase in necrotic tis-
sues, and deposition of connective tissue fibers. Also, 
marked dilated portal vein and proliferation of bile duct 
were observed. Nodular hepatocytes surrounded by thick 
fibrous connective tissue septa were clearly observed 
indicates hepatic cirrhosis. Selim et al. reported that liver 
examination of TAA rats showed swelling and vacuolar 
degeneration in hepatocytes with leucocytes inflamma-
tory cell aggregation in liver parenchyma [39]. Sadasivan 
et al. reported hepatic destruction, after TAA intake that 
ranged from necrosis of parenchymal cell and prolifera-
tion of liver cell to formation of nodular cirrhosis and 
pseudo lobules [40]. Chen et  al. reported that livers of 
rats given TAA showed periportal inflammatory cell infil-
trations with severe centrilobular necrosis, hepatocyte 
degeneration with vacuolar cytoplasm, and congestion of 
blood sinusoids and central veins [41]. Also, Emam et al. 
[42] and Hammam et  al. [43] noticed hepatic inflam-
matory infiltration, partial distortion of lobular hepatic 
architecture, moderate hydropic hepatocyte degenera-
tion, constricted portal vein, thick fibrous tissue in the 
portal canal, and serious liver destruction of TAA rat 
model.
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The experimental findings of this research revealed 
that in apigenin-treated groups, final body weight 
was increased while liver weight and liver index were 
decreased compared to TAA positive control group. 
These finding were same as those obtained by Jeyabal 
et al. who reported that i.p. apigenin admiration (25 mg/
kg) for 14 days significantly increased body weight and 
decreased liver weight and index in N-nitrosodiethyl-
amine (NDEA)-induced hepatocellular carcinogenesis in 
rats [44]. Also, administration of API caused significant 
decreased in WBC count and increased in RBC count, 
platelet count, HBG contents, and HCT value that may 
be due to anti-oxidant properties of apigenin on liver 
and bone marrow. These results were in line with those 
obtained with previous researches [9, 45]. The decrease 
in WBC count could be due to anti-inflammatory effect 
of API [9]. Also, serum ALT, AST, GGT, and LDH lev-
els in API-treated groups were decreased, while serum 
values of total proteins, globulin, and albumin were 
increased especially in therapeutic group, suggesting that 
apigenin may treat TAA-induced hepatotoxicity. Liver 
damage caused by acetaminophen, furan, N-nitrosodi-
ethylamine (NDEA), alcohol, high-fat diet, and carbon 
tetrachloride was decreased by API, according to ear-
lier studies due to its anti-inflammatory and antioxidant 
characteristics [46–49]. Ali et al. found that API intake in 
dose of 1–4% solution orally administered to Wistar rats 
for 21 days protect against NDEA-induced hepatotoxic-
ity [47]. Wang et al. reported that API administration in 
dose of 5–20 mg/kg, orally for 7 days to BALB/c mice 
led to protection of furan-induced hepatotoxicity [10]. 
This study investigated effects of oxidative stress mark-
ers, including SOD, CAT, GST, and MDA to understand 
potential mechanisms of apigenin in mitigating TAA-
induced hepatotoxicity. According to this study findings, 
apigenin can elevate antioxidant markers as SOD, CAT, 
and GST levels in serum while lowering oxidative stress 
marker as MDA levels. These results align with a num-
ber of earlier researches [50–52]. Apigenin administra-
tion at low dosages (10, 20, and 40 mg/kg) protected rat 
livers from ROS-induced oxidative destruction by low-
ering lipid peroxidation and membrane protein destruc-
tion and release of blood serum enzymes indicators like 
ALP, LDH, ALT, and AST [47]. Yang et al. found that API 
administration to mice in dose of 100–200 mg/kg, orally 
for 7 days, led to elevated hepatic glutathione reductase 
activity [46]. Tsalkidou et al. reported that API intake in 
dose of 15 mg/kg, i.p. once to Wistar rats led to decline 
in ischemia/ reperfusion-induced hepatic necrosis by 
Fas/FasL pathway [53]. Paredes-Gonzalez et al. reported 
that API administration in dose of 1.56–6.25 μΜ, in vitro 
into HepG2 cell for 6–12 h, led to induction of Nrf2-
mediated antioxidant gene expression [54]. Previous 

researches revealed that apigenin had antioxidant actions 
by enhancing nuclear factor erythroid 2-related factor 2 
signaling pathway, suppresses expression of transcrip-
tion factors regulating proliferation, differentiation, and 
immune cells activation, and had anti-inflammatory role 
by suppressing NF-κB signaling pathway [55]. Zheng 
et  al. revealed that apigenin increased anti-oxidative 
capacity both in vitro and in vivo and suppressing TLR4/
NF-κB/TNFα inflammation pathway in the liver, indi-
cating that apigenin performs anti-inflammation and 
anti-oxidative stress effects [56]. In contrast, Singh et al. 
reported that apigenin therapy with 100 or 200 mg/kg 
once by i.p. intake in Swiss mice led to increase of serum 
AST, ALT, ALP, and final hepatic damage via enhance-
ment of oxidative stress markers [57].

Based upon histological findings of this investigation, 
apigenin shields the liver from TAA-induced fibrosis. 
Our results were in agreement with Ji et  al., who dem-
onstrated that apigenin might reduce liver fibrosis in a 
dose-dependent way [58]. Sahindokuyucu-Kocasari et al. 
found that pretreatment with apigenin reduces renal and 
hepatic toxicity by reducing oxidative stress and tissue 
damage indicators, histological abnormalities, apopto-
sis, and inflammation [59]. Abdel-Rahman et al. reported 
that apigenin hinders TAA-triggered liver fibrosis in rats 
by, at least partly, suppressing oxidative stress and profi-
brogenic and pro-inflammatory biomarkers. Their results 
established a recent approach associating the anti-fibrotic 
mechanism of apigenin through inhibiting hypoxia-
inducible factor 1-alpha and focal adhesion kinase path-
ways [60].

In the present study, treatment with silymarin 
improves final body weight, liver weight, and liver 
index compared to TAA positive control group. Also, 
silymarin improve hematological and liver functions 
alteration caused by TAA. Silymarin’s pharmacological 
properties include controlling leukotriene levels, main-
taining the integrity of cell membranes, and scaveng-
ing ROS. Abdel-Salam et al. reported that silymarin (22 
mg/kg) suppressed leakage of hepatocellular enzymes 
(AST and ALT) to plasma, declined serum values of 
ALP, and decreased hepatic necrosis and fibrosis devel-
opment induced by carbon tetrachloride [61]. Results 
of this study also revealed that, in comparison to TAA 
positive control group, silymarin considerably boosted 
SOD, CAT, and GST serum levels while significantly 
decreasing serum MDA levels. This is because silyma-
rin has antioxidant and ROS-scavenging properties that 
guard versus oxidative stress. It strengthens cells’ non-
enzymatic and enzymatic antioxidant defense mecha-
nisms, which include GSH, SOD, and CAT. Due to its 
capacity to stop lipid peroxidation and restore depleted 
glutathione levels, it can shield crucial organs from 
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oxidative damage. Additionally, silibinin has membrane-
protective characteristics and might shield blood com-
ponents from oxidative destruction [62, 63].

The present results revealed that silymarin-fed 
groups displayed significant protection of the hepatic 
cells from apoptotic cell death versus widespread liver 
damage initiated in TAA-treated group. Silymarin alle-
viate edema, inflammation, leucocyte cell infiltration, 
necrotizing hepatocytes, and connective tissue fiber 
propagation caused by TAA. Furthermore, liver tissue 
maintained its nearly normal hepatic lobular structure. 
These finding in line with findings of Abdelaal et al. [64] 
and Emam et al. [42] reported that in silymarin-treated 
group, the portal area appeared almost normal apart 
from minimal cellular infiltration and central vein con-
gestion, decline in fibrous deposition that found only in 
portal area. In this study, therapeutic group appeared 
more improved in histological structure compared to 
SL+TAA protective experimental group where sily-
marin was given to rats before treatment with TAA. 
Silymarin showed hepatoprotection and ameliorated 
TAA-induced liver damage when given after treatment 
with TAA.

This study had some limitations as usage of male rats 
only in order to exclude hormonal effects on observed 
changes. Also, electron microscopic examination of 
liver was not made that needed further experiments 
to search about molecular mechanism of action of api-
genin in preventing and treatment of liver injury.

Conclusions
The current research revealed that apigenin may had 
beneficial protective and therapeutic actions on TAA-
induced hepatic fibrosis in rats, and its mechanisms 
may be due to enhancing antioxidant agents and 
decreased oxidative stress and inflammatory markers. 
The therapeutic effect is better than protective effect 
on the liver functions and improvement of oxidative 
stress markers. These results indicate that apigenin is 
antioxidant, highlighting its potential use as a food sup-
plement to guard versus hepatotoxicity. More investiga-
tions are required to completely understand the precise 
molecular pathways and targets by which API exerts its 
hepatoprotective and therapeutic effects.
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