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Abstract 

Mouth is the gateway to the total body wellness. Accordingly, oral microbiome influences overall health of an indi-
vidual. Oral microbiome plays a key role in shaping up the host’s health profile. Obvious differences have been 
reported between patients with gastrointestinal diseases and healthy controls. The oral and gut microbiome profiles 
are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa 
in conditions of the oral–gut barrier dysfunction. Oral bacteria can disseminate to the distal gut via enteral or hema-
togenous routes. The translocation of oral microbes to the gut may give rise to a variety of gastrointestinal diseases 
including Helicobacter-induced diseases, irritable bowel syndrome, inflammatory bowel disease, celiac disease, 
and colorectal cancer. Understanding the role of the oral-to-gut microbial translocation in the pathogenesis will 
contribute to precise diagnosis and effective treatment. In this review, we aim to highlight the role of oral microbiota 
dysfunction in various gastrointestinal disorders.
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Introduction
More than  1014symbiotic microorganisms colonize the 
human body referred to as the human microbiota [1, 2]. 
Oral microorganisms are identified as a constituent of 
the oral microbiome with the aid of using the Human 
Oral Microbiome Database (http:// www. homd. org/) and 
feature a better abundance in the oral cavity than in the 
gut samples of healthy individuals based on the NIH 
Human Microbiome Project (HMP1; https:// hmpda cc. 
org/ hmp/) [3]. The oral cavity is the preliminary gateway 
of the human digestive system and has the second-big-
gest and maximum various microbiota after the intes-
tine, harboring extra than 770 species of bacteria [4]. 
From 12 international locations worldwide, salivary oral 

microbiota outcomes confirmed person specificities with 
few geographic variations among these subjects [5]. Fir-
micutes, Proteobacteria, Bacteroidetes, and Actinobacte-
ria confirmed the very best abundance [6]. Oral microbes 
can spread through the body and have been found in a 
variety of systemic diseases, whether in sterile organs 
such as cardiovascular diseases and rheumatoid arthritis 
or in non-sterile organs such as the digestive tract [7, 8].

The oral microbiome plays a pivotal role in human 
health. Both inflammatory and anti-inflammatory 
responses may be induced in the host tissues by mem-
bers of the oral microbiota [9]. The benefits to the host 
include resistance to infections mediated by inhibi-
tion of colonization by pathogenic microorganisms 
[10], maturation of both the innate and adaptive host 
immune systems, and fine-tuning of its reaction pat-
terns to achieve a balance between inflammatory and 
anti-inflammatory reactions [11–16]. Oral microbial 
dysbiosis is the major causative factor of oral diseases 
such as dental caries and periodontal diseases [7], and 
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it is also closely associated with systemic diseases such 
as asthma and atopic diseases, inflammatory bowel dis-
eases, autoimmune disease, obesity and metabolic syn-
drome, colon cancer, peripheral vascular disease and 
hypertension, aberrant responses to drugs, depression, 
and autism [17].

Although millions of oral and salivary microbiomes 
are swallowed daily with our food, their persistence 
and passage to the gut are affected by many factors 
including gastric acidity, bile acids production (BAs), 
digestive enzymes and antimicrobial proteins in the 
duodenum and beyond, intestinal architecture, peri-
stalsis, and transit times [18]. The concentration gra-
dient of microbes is found along the small intestine, as 
microbial abundance in oral samples was found to be 
1000-fold higher than that of duodenal aspirates [19] 
(Fig. 1).

Oral pathogens had been found abnormally enriched 
in the gut mucosal tissues and the luminal contents 
in patients with gut diseases [20, 21]. Therefore, it is 
suggestive that the ectopic gut colonization of oral 

pathogens is partially responsible for the pathogenesis 
of gut diseases: oral-gut axis microbiota.

Gut colonization by oral bacteria
Two routes had been suggested for the oral bacteria to 
reach the gut: hematogenous and/or enteral.

Hematogenous route
Oral mechanical injuries caused by daily dental activity, 
e.g., hard mastication and brushing, and dental proce-
dures, e.g., orthodontics and extraction, enable oral bac-
teria to spread into the systemic circulation [22, 23]. Oral 
bacteria invade and survive inside immune cells, such as 
dendritic cells and macrophages. These cells help dis-
semination of the oral bacteria from the oral to the gut 
mucosa [7].

Enteral route
A human being swallows about 600 times a day, and ~ 1.5 
L of saliva contains numerous resident oral bacteria 
[24, 25]. Most of the ingested oral bacteria do not reach 
and/or colonize the healthy gut because of the barrier 

Fig. 1 Human microbiota composition in different locations. Predominant bacterial genera in the oral cavity, respiratory tract, skin, gut, and vagina. 
Published by Hou K. et al. in the Signal Transduction and Targeted Therapy (2022) 7:135
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functions along the gastrointestinal tract. The gut resi-
dent microbiota is the major barrier that prevents the 
ectopic colonization by swallowed oral bacteria, so, gut 
dysbiosis is a prerequisite for the ectopic colonization of 
oral pathobionts.

Gut barriers dysbiosis
Gut dysbiosis-inducing factors include gut inflammation, 
and diets such as high fat, low-fiber diet, and artificial 
sweeteners are the main factors. Other possible factors 
include immune depression as aging, smoking, drugs, 
virus infection, or immune compromization as HIV [26]. 
The inappropriate use of antibiotic and the long-term use 
of proton-pump inhibitors that reduce the gastric acidity 
facilitate opportunistic gut colonization by oral bacteria. 
Other examples of the effect of impaired gastric acidity 
include individuals who have gastritis and gastric surgery 
(e.g., gastric bypass or gastrectomy) [27, 28]. These indi-
viduals have significant increase in the level of resident 
oral bacteria and altered bacterial composition. Worth 
mentioning, certain types of oral bacteria, such as Por-
phyromonas gingivalis, can tolerate the acidic environ-
ment in the stomach and consequently may pass through 
the stomach barrier [29].

Role of oral bacteria in Helicobacter‑induced gastric 
pathology
Helicobacter pylori can be detected in the mouth and gut. 
The number of H. pylori in the mouth is actually lower 
than in the stomach constituting roughly 42–97% of the 
total gastric bacterial community [30]. Because the oral 
microbiome is the main source of gastric microbes, it is 
intimately related to the infection and transmission of H. 
pylori [31, 32].

Interactions between H. pylori and oral microbiome 
may take one or further of three main forms: co-aggre-
gation, symbiotic biofilm formation, and endosymbiosis 
[33]. Fusobacterium nucleatum and Porphyromonas gin-
givalis which might be vital microorganism in periodon-
tal infection can mixture with H. pylori cells promoting 
oral to gastric colonization by oral bacteria [34].

Streptococcus mutans, the fundamental cariogenic bac-
terium, can shape a symbiotic biofilm with H. pylori to 
increase its survival in the unsuitable atmosphere of the 
mouth [35]. H. pylori can anchor on the surface of the 
Candida albicans and mixture with C. albicans to form 
a mixed biofilm. Also, H. pylori plan to enter C. albicans 
yeast cells in the oral cavity and vagina [36, 37].

The interaction between H. pylori and members of 
the oral microbial community in H. pylori-positive peo-
ple with oral complaints differs from those with gastro-
intestinal complaints. P. gingivalis has been established 
as a pathogenic agent of periodontitis and positively 

associated with H. pylori indicating that H. pylori infec-
tion may aggravate periodontal disease [38]. The trans-
mission of oral-to-gut and gut-to-oral microorganisms 
can affect the ecosystem in both territories and hence 
regulate the pathogenesis of different diseases [39].

Role of oral bacteria in gut pathology
The presence of nearly half of the microbial species in 
both the mouth and gut gives evidence of oral-gut trans-
location even in healthy individuals [40]. This is known 
to modulate host immunity [41]. Hence, ectopic colo-
nization by oral bacteria in the healthy gut may in part 
contribute to the physiologic development and/or main-
tenance of gut immunity. On the other hand and under 
certain conditions, gut colonization by specific oral 
bacteria might be linked to the pathogenesis of diseases 
in the gastrointestinal tract. The dissemination of oral 
microbes to the intestine may also exacerbate diverse gas-
trointestinal diseases, including irritable bowel syndrome 
(IBS) [42], inflammatory bowel disease (IBD) [43], celiac 
disease [44], and colorectal cancer (CRC) [45] (Fig. 2).

Irritable bowel syndrome
IBS is one of the most common disorder occurring in up 
to 4.8% of the population worldwide [46]. IBS is described 
as chronically recurring abdominal pain related to altered 
bowel habits in the absence of detectable organic dis-
ease. Recent evidence suggests the presence of IBS sub-
groups based on gut microbial community structure, 
with groups not differing from healthy controls despite 
GI symptoms [47, 48]. The most effective treatments 
for IBS and other disorders of oral-gut axis interactions 
include personalized diet approaches, behavioral thera-
pies, and a few number of pharmacologic treatments to 
improve bowel function. As a common feature in IBS, 
there is an increase in the families Enterobacteriaceae 
and Lactobacillaceae and a decrease in the genera 
Clostridium, Faecalibacterium, and Bifidobacterium, as 
compared with controls [49]. The gut of patients with IBS 
showed enrichment of certain types of typical oral bacte-
ria such as Streptococcus spp. and family Veillonellaceae 
[50–53]. Veillonellaceae was found abundantly in the gut 
of overweight patients with IBS who have significantly 
higher induced visceral pain scores than normal-weight 
patients with IBS. Veillonellaceae were also responsible 
for gastrointestinal colics in infants caused by the accu-
mulation of lactate, hydrogen, or hydrogen sulfide [54]. 
Vervier et  al. in 2022 [55] were able to stratify patients 
with IBS according to their gut microbiota species. Gut 
microbiota subtype with an enhanced clinical response to 
a low FODMAP diet compared with other subjects with 
IBS was identified. Microbiota signatures reported to be 
useful as biomarkers to guide IBS treatment. Recently, 
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Tanaka and his colleagues [56] reported that colonic host-
microbial interactions are altered in IBS-D patients dur-
ing exacerbation of symptoms. However, there were no 
overlaps between feces and oral microbiomes. Tang and 
his colleagues [57] showed that the oral and fecal micro-
biota composition in IBS-D patients differed significantly 
from that in the normal population. The imbalance of 
Firmicutes/Bacteroidetes ratio in the oral microbiota of 
IBS-D patients, as compared to fecal microbiota, is of 
much concern. Additionally, the decrease in oral micro-
bial richness was more directly connected to IBS-D [58].

Inflammatory bowel disease
The specific etiology of IBD stays poorly understood 
despite the identity of relevant risk factors, which include 
individual genetic susceptibility, environmental triggers, 
and disruption of immune homeostasis. Dysbiosis of 
the gut microbiota is thought to exacerbate the develop-
ment of IBD. An imbalance of the gut microbiota appears 
to be an essential factor in the pathogenesis of IBD [59]. 
Gut dysbiosis in IBD is characterized by a decrease in 
the bacterial diversity and species richness of the micro-
biota. Docktor et al. [60] found a significant decrease in 
the overall microbial diversity of pediatric CD. Fusobac-
teria and Firmicutes were significantly reduced in CD, 
whereas Bacteroidetes were increased in UC compared 
with healthy controls. Said et al. [61] found that the sali-
vary microbiota in adult IBD was significantly different 
from that of healthy controls, characterized by increased 
Bacteroidetes, Prevotella, and Veillonella, with decreased 
Proteobacteria, Streptococcus, and Haemophilus. Zhe 
et  al. [62] revealed enrichment of Streptococcaceae and 
Enterobacteriaceae in UC, and Veillonellaceae in CD, 

while depletion of Lachnospiraceae and Prevotellain UC 
and Neisseriaceae in CD. Oral biofilm-forming bacteria 
were significantly increased in the salivary microbiota of 
IBD patients. Moreover, TM7 and SR1 showed a positive 
correlation to inflammatory cytokines associated with 
IBD, indicating that alterations in oral microbiota are 
related to altered inflammatory immune responses [63].

The best-described mechanisms of the oral microbiota 
in IBD occurrence are the destruction of the intestinal 
epithelial barrier, excessive secretion of inflammatory 
cytokines, disruption of the host immune system, and 
induction of immune escape. Oral bacteria-mediated 
destruction of the intestinal epithelial barrier may 
increase intestinal permeability and mucosal degrada-
tion, leading to the impairment of intestinal resistance 
to pathogens and intestinal inflammation. Ectopic colo-
nization of oral bacteria disrupts the ecological balance 
among the oral microbiota, host, and immune system, 
leading to continuous intestinal inflammation [64]. Kita-
moto et  al. [65] show that the oral pathobionts during 
periodontitis aggravate gastrointestinal pathology via 
two mechanisms. Specific oral pathobionts are able to 
colonize the colitic gut and enhance IL-1β production. 
Also, oral pathobiont-reactive Th17 cells, primed in oral 
mucosa-draining lymph nodes, trafficked to the gut and 
became reactivated by periodontal microbiota traveling 
to the gastrointestinal tract through ingestion.

Colorectal cancer
CRC has a distinct gut microbial composition as com-
pared with healthy individuals. Many of the bacte-
ria enriched in colonic adenomas and carcinomas are 
related to the typical resident oral bacteria, including 

Fig. 2 The possible pathways that link periodontitis and systemic disease. Published by Deandra F. et al. in Heliyon 9 (2023) e13475
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the families Streptococcaceae and Neisseriaceae and the 
genera Staphylococcus, Porphyromonas, Veillonella, and 
Fusobacterium [66, 67] with validation from three recent 
large cohort studies [21, 68, 69]. The transmission rates of 
bacteria from the mouth to the gut are higher in patients 
with CRC when compared with healthy individuals in 
particular the transmission of Fusobacterium nuclea-
tum, Parvimonas micra, and Peptostreptococcus stomatis 
supporting the potential link between the oral and gut 
microbiome in patients with CRC [70].

Porphyromonas gingivalis and Fusobacterium nuclea-
tum are two famous CRC-related oral pathogens. Both 
of them can cause CRC through a different pathogenic 
pathway.

Porphyromonas gingivalis A gram-negative anaerobic 
bacteria was found to be responsible for both the occur-
rence of periodontitis [71] and was enriched in CRC 
patients [72]. It was positively associated with poor prog-
nosis in CRC patients. It stimulates cellular senescence via 
butyrate secretion and accelerates the onset of colorectal 
tumors [73]. It can promote colorectal tumorigenesis by 
recruiting tumor-infiltrating myeloid cells and creating a 
proinflammatory tumor microenvironment via activation 
of the hematopoietic NOD-like receptor protein 3 inflam-
masomes [72]. It has the antiapoptotic ability of epithe-
lial cells through inhibition of caspase 3 [74] and caspase 
9 [75]. It inhibits the suppressor of cytokine signaling 3 
causing apoptosis via STAT3 [76]. In addition, P. gingi-
valis contributes to accelerating epithelial cell prolifera-
tion through regulating the activity of PI3K, p53 [77], and 
cyclins [78], as well as activation of the WNT/β-catenin 
[79] and MAPK/ERK [80] pathways.

Fusobacterium nucleatum Similar strains of F. nuclea-
tum are detected in both the saliva and colonic tumors of 
patients with CRC, indicating that F. nucleatum colonized 
in the colonic tumors originates in the oral microbiota 
[81]. F. nucleatum is highly adhesive to the gut epithe-
lium through Fap2 adhesin promoting the proliferation 
of tumor cells by activation of the Wnt/β-catenin path-
way [82]. The abundance of F. nucleatum is gradually 
increased from normal tissues to adenoma tissues and to 
adenocarcinoma tissues in colorectal carcinogenesis [83, 
84]. F. nucleatum is increased in CRC patients after chem-
otherapy with recurrence, compared with those with non-
recurrence. It becomes evident that F. nucleatum directly 
promotes CRC chemoresistance to oxaliplatin and 5-fluo-
rouracil through the activation of the autophagy pathway 
[85]. The high abundance of F. nucleatum in CRC is asso-
ciated with poorer survival [81, 86]. Accordingly, F. nucle-
atum promotes the occurrence and development of CRC 

through localization, proliferation, immune suppression, 
metastasis, and chemoresistance.

Celiac disease
Patients who have celiac disease have oral flora dys-
biosis. The initial metabolism of gliadin in the oral cav-
ity may be related to the genus of Rothia, Actinomyces, 
Neisseria, and Streptococcus that colonized the oral cav-
ity [87]. There is a significant increase in Lactobacillus 
species in the saliva of patients with celiac disease. This 
may be one of the reasons to explain gluten degradation 
and its higher rate in comparison to healthy people [88]. 
Although α-gliadin peptide could be completely degraded 
by dental plaque bacteria to reduce immunogenicity [88, 
89], still, others report oral microbial enzymes to degrade 
part of gluten, which in turn increases immunogenic 
small molecule peptides and further induces intestinal 
inflammation [88].

Panelli et al. [90] investigated 52 adult patients affected 
with celiac disease and 31 patients with functional dys-
pepsia, to characterize the salivary, duodenal, and fecal 
microbiota composition. In addition to a general reduc-
tion of the microbial diversity in all analyzed samples 
from celiac disease patients, this study showed a signifi-
cant abundance of Proteobacteria in active celiac disease 
and, importantly, confirmed the expansion of Neisseria 
spp. Moreover, they reported a better correspondence 
of the bacterial microbiota in the saliva with duodenal 
mucosa microbiome, rather than with fecal samples.

Gut microbiota therapeutic manipulation
Multiple substances can be used to modulate many phys-
iologic functions within the body that constitute one of 
the risk factors in the pathogenesis of many diseases.

Prebiotics It is a selectively fermented ingredient that 
results in specific changes in the composition and activ-
ity of the gastrointestinal microbiota, thus conferring 
benefit(s) upon host health [91]. It is safe, effective, and 
has a great therapeutic effect and minimal side effects 
in maintaining IBD [92]. Fructo-oligosaccharides in CD 
patients increase mucosal Bifidobacteria and reduce 
the inflammation index [93]. Prebiotics prevent CRC in 
patients with its high risk and improve their immunologi-
cal response [94, 95].

Probiotics These are live organisms that, when admin-
istered in adequate doses, confer a health benefit on 
the host [96]. IBS is the main treatment indication [97]. 
Butyrate-producing Faecalibacterium prausnitzii induces 
immune responses, has anti-inflammatory effects, and 
improves intestinal barrier function [98, 99].
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Fecal microbiota transplantation and  fecal virome trans-
plantation Whether liquefied or encapsulated, pre-
processed stool from a healthy donor is transferred to the 
recipient’s colon. It is successful in the treatment of recur-
rent C. difficile infection and colitis [100, 101]. Other indi-
cations for the use of FMT include the treatment of anti-
biotic-resistant bacteria (ARB) gut colonization [102] and 
acute gastrointestinal graft-versus-host disease [103–105].

A new version of FMT is fecal virome transplantation 
(FVT), which uses bacteriophages to restore gut micro-
biota dysbiosis. However, the prophage-encoded viru-
lence factors remain a safety issue, which limits the use 
of phages in medicine [106].

Microbiota metabolites These not only produce dis-
eases but also have a therapeutic role. It has a role in 
the prevention and treatment of CRC [107]. The only 
metabolites that are anticarcinogenic are SCFAs 
[108] and polyphenol metabolites [109, 110]. Butyrate 
increases SCFAs and prevents the formation of harmful 
substances in the rectum [111]. Butyrate enhances the 
efficacy of radiotherapy in CRC patients [112], suggest-
ing that gut microbiota-derived metabolites could be 
associated with modalities in cancer treatment.

MiRNA Intestinal miRNAs respond to commensals, 
pathogens, and probiotics. In the human intestines, 
miRNAs are mainly synthesized in the intestinal epi-
thelial cells. Any deficiency in the miRNA synthesis 
by those cells is associated with gut microbial dysbio-
sis [113]. Intestinal miRNA may regulate responses to 
pathogenic and probiotic bacteria. Probiotic bacteria, 
Bifidobacterium bifidium, can alter intestinal miRNA in 
a species- and strain-specific manner [114].

Hyaluronan (HA) It is considered a novel tool for the 
development of novel therapeutic agents for the treat-
ment of diseases underlying dysregulation of the micro-
biota–immune–gut axis [115]. HA appeared to directly 
modulate the promotion and resolution of IBD by 
controlling the recruitment of immune cells, through 
the release of inflammatory cytokines, and by balanc-
ing homeostasis [116]. The biological effects of HA are 
mediated by recruiting different receptors, such as CD44 
[117], and by promoting the activation of toll-like recep-
tors, particularly, TLR2 and TLR4, present in different 
cell types, including fibroblasts, smooth muscle cells, epi-
thelial cells, immune cells, and neuronal cells [118, 119].

Nanomedicine‑based approaches and extracellular vesicles
These are experiments trying to shape nanomaterials 
able to alter the cancer-causing dysbiotic microorgan-
isms as well as their metabolites found in the cancer 

microenvironment [120]. Microbiota has the ability to 
interact with host cells and mitochondria, when needed, 
through extracellular vesicles, leading to the endocyto-
sis of the extracellular vesicle and its content delivery 
[121–123]. Exosomal microRNA derived from mesen-
chymal stem cells plays a strategic role in modulating 
the gut microbiota and inflammatory status.

Conclusion
The oral-gut axis microbiota plays an important role 
in maintaining homeostasis. The oral cavity is an easily 
accessed body site for the assessment of the microbial 
community, with convenient sampling, noninvasiveness, 
and effective interventions. Hence, the oral microbiota 
holds great promise for diagnostic tools. New therapeutic 
approaches targeting the oral microbiota by facilitating 
beneficial bacteria and eliminating pathogenic oral bacte-
ria may be an innovative medical strategy to prevent and 
treat many gastrointestinal disorders. Beyond having the 
pre- or probiotics, which are the traditional and first-line 
choice of microbial therapies, other strategies are being 
clinically studied such as the FMT, metabolites, phages, 
and miRNAs.
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